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Extensions to conventional aircraft aerodynamic models are required to adequately 
predict responses when nonlinear unsteady flight regimes are encountered, especially at high 
incidence angles and under maneuvering conditions. For a number of reasons, such as loss of 
control, both military and civilian aircraft may extend beyond normal and benign 
aerodynamic flight conditions. In addition, military applications may require controlled flight 
beyond the normal envelope, and civilian flight may require adequate recovery or prevention 
methods from these adverse conditions. These requirements have led to the development of 
more general aerodynamic modeling methods and provided impetus for researchers to 
improve both techniques and the degree of collaboration between analytical and experimental 
research efforts. In addition to more general mathematical model structures, dynamic test 
methods have been designed to provide sufficient information to allow model identification. 
This paper summarizes research to develop a modeling methodology appropriate for 
modeling aircraft aerodynamics that include nonlinear unsteady behaviors using both 
experimental and computational test methods. This work was done at Langley Research 
Center, primarily under the NASA Aviation Safety Program, to address aircraft loss of 
control, prevention, and recovery aerodynamics.  
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A, B, C = transfer function coefficients 
Aj, Bj = Fourier coefficients 
a, b1 =  indicial function parameters 
b  =  wing span, ft 

 =  aero coefficients, a = [N, m, l, n, Y, A] 
Cl = rolling-moment coefficient 
CN = normal-force coefficient 

 = mean aerodynamic chord, ft 
  =  in-phase components of  

  =  out-of-phase components of  

D =  time domain differential operator 
d0, d1  =  coefficients in two-step regression 
 

f = frequency, Hz 
J(θ)  =  sum of squared residuals 
k  =  reduced frequency,  

  =  half chord or half span, ft 
m = No. of harmonics in Fourier expansion 
N = number of data points 
p, q, r = roll, pitch, and yaw rates, rad/sec 
R2  =  coefficient of determination 
s = estimated standard error 
t = time, sec 
V  =  airspeed, ft/sec 
y  =  output variable 
z  =  measured variable 
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I. Introduction 
erodynamicists have studied the problem of finding adequate aerodynamic models with good prediction 
capability since the early days of flight. Bryan’s formulation [1] in 1911 established the conventional assumption 

that aerodynamic forces and moments depend only on instantaneous values of aircraft states and controls, which can 
be expressed in a linear polynomial expansion. These assumptions work well but primarily restrict the models to linear 
portions of the flight envelope. Adding nonlinear terms to the series expansion [2] extends the capability of the model 
allowing a certain class of model nonlinearity to enter the response but still no memory of previous states is captured. 
Improving this formulation to accommodate unsteady responses requires additional differential equations to capture 
the lag in response. Research efforts addressing the nonlinear unsteady problem began in the 1970’s with recognition 
that the Volterra functional was a desirable mathematical structure [3]. This model structure, in the form of indicial 
models, is sufficiently general to capture a large class of nonlinear unsteady behaviors. A number of researchers have 
investigated this modeling problem. The modeling of unsteady aerodynamic characteristics of an aircraft from 
experimental data was first reported in [4]. The model equations were formulated as state-space equations. Further 
improvement to this modeling and parameter estimation followed in [5-7]. Many other researchers have approached 
the modeling problem using an indicial function formulation. In [8-9], linear indicial models were applied to data from 
different testing facilities and different aircraft models. Identification of indicial models from flight test data were 
considered in [10]. Early work addressing equations for longitudinal motion of aircraft with separate treatment of the 
horizontal tail can be found in [11-12] and later work placing emphasis on obtaining a model structure suitable for 
parameter estimation using experimental data was developed in [13]. These indicial models represented responses for 
the wing and tail lift separately and interference between the two lifting surfaces. In [14-15], nonlinear indicial 
response models were applied to the rolling 65-degree delta wing and in [16] to the prediction of a dynamically stalling 
wing. Nonlinear indicial models were also used in model identification from wind tunnel oscillatory data using least 
squares and maximum likelihood principle [17]. In [18] a method was introduced that allowed efficient identification 
of a linear unsteady model for an F-16XL configuration in planar forced oscillation. In this approach the aerodynamic 
model was formulated with static and steady-flow damping terms separate from unsteady indicial components. 
Enhanced System Identification (SID) and efficient testing was accomplished by using wide-band inputs. In [19] 
additional experiments were performed to validate the methods, mathematical models, and test techniques used in 
[18].  

A substantial portion of the indicial modeling work described above was motivated by research for fighter aircraft 
configurations that continued to demand better modeling and control in an expanded flight envelope. Over 
approximately the last decade, supported primarily by the NASA Aviation Safety Program, unsteady modeling 
research at NASA Langley Research Center (LaRC) developed a range of modeling methods forming a methodology 
that extended the previous work. A summary of the unsteady modeling methodology is provided in this paper. The 
model identification problem, mathematical model structures, estimation methods, and example results are provided. 
This extended work considered a broader class of aircraft configurations and corresponding changes in required 
mathematical model structures. These changes broadened and refined both test and analysis methods. The research 
also reflected modeling demands for both military and civilian aircraft including a growing presence of a wide 
spectrum of unmanned aerial vehicles (UAV). In these cases, modeling requirements may include an expanded flight 
envelope for military applications or greater safety over a broader flight envelope for civilian aircraft. Unique 
modeling requirements also exist for both large and small UAV designs. UAV challenges stem from small UAVs that 
operate at very low Reynolds numbers [20], or larger complex designs, such as the NASA GL-10, with VTOL 
capability obtained through distributed electric propulsion (DEP) and tilt-wing features [21-23]. A common 
aerodynamic feature in all applications is the presence of nonlinear unsteady aerodynamic behaviors in some portions 

A 

α = angle of attack, rad or deg 
αΑ = angle-of-attack amplitude, rad or deg 
α0 = mean angle of attack, rad or deg  
β  =  sideslip angle, rad or deg 
η = state variable 
θ  =  vector of unknown parameters 
σ2 =  variance 
 

τ = dummy integration variable 

τ1 = non-dimensional time constant,  

ν  =  residuals 
ξ  =  aircraft states, [α, β, p, q, r]T 
φ = roll angle, rad or deg 
φΑ = roll angle amplitude, rad or deg 
ω = angular frequency, rad/sec,  
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of the flight envelope. When these behaviors are present conventional modeling approaches are limited and more 
general aerodynamic models are required. More general, higher fidelity models facilitate simulation and design of 
predictable, controllable, and recoverable flight vehicles when subjected to adverse aerodynamic conditions.  

The degree of nonlinearity and degree of unsteadiness results in one of four aerodynamic conditions that must be 
modeled accordingly. These four cases are (1) linear and steady (L-S), (2) linear and unsteady (L-U), (3) nonlinear 
and steady (NL-S), and (4) nonlinear and unsteady (NL-U). The methodology discussed in this paper addresses the 
approach to discerning which condition is present, which model structure is best suited to represent the physics, and 
how that model can be identified using SID. The first condition (L-S) is readily modeled using conventional 
approaches. An effective approach for the second condition (L-U) where unsteady behaviors are present, was 
demonstrated in [18] and [24]. In [24] a two-step regression method was applied to F-16XL forced-oscillation data. 
The two-step regression was first proposed in [25]. This method is advantageous when linear unsteady behaviors 
appear in both in-phase and out-of-phase coefficients found during harmonic analysis of forced-oscillation data. 
Harmonic analysis provides initial characterization of the aerodynamics by identifying where in the flight envelope 
unsteady or nonlinear behavior occurs, over what frequency ranges the unsteadiness is present, and it provides an 
estimate of the degree of aerodynamic nonlinearity. Research with the NASA Generic Transport Model (GTM) 
configuration found that the unsteady behavior was only present in the out-of-phase component. In that case an output 
error (OE) method in the time domain [26] and a nonlinear regression method in frequency domain [27] were applied 
to estimate model parameters. The method in [26] also made use of a “stacking” technique that combined each single-
frequency forced-oscillation response into one vector. The technique allows each frequency case to be integrated 
properly in the time domain but then results are combined in a single output error cost function calculation. Refs. [26-
27] provided further insights into modeling aerodynamic responses for configuration components of body-tail, body-
wing, and body-wing-tail. Calculation of steady downwash and aerodynamic center change with respect to angle of 
attack were performed in [26] for the GTM configuration and in [28] for a model provided by the Central 
Aerohydrodynamic Institute (TsAGI). Ref. [29] included discussions on issues with identifiability and important 
considerations for experiment design using single-frequency forced oscillation data.  

The third aerodynamic condition (NL-S) where unsteady behaviors are negligible but nonlinearities are still present 
has been studied extensively. In this case, stepwise regression [2] and orthogonal polynomials [30] provide a 
statistically rigorous way to add terms to a polynomial expansion. In [31] an advanced transport configuration, called 
the NASA Hybrid Wing Body, was studied in a water tunnel at Rolling Hills Research Corporation. This study used 
the frequency stacking technique and output error for model estimation in application to a case with nonlinear 
aerodynamics and negligible unsteady behaviors.  

The fourth aerodynamic condition (NL-U), where the response is both nonlinear and unsteady, is more complex 
but manageable using a systematic approach. A systematic approach was first suggested in [32] for this more difficult 
problem. In that study, harmonic analysis was used to define the degree and location of nonlinear and unsteady 
responses. In this progressive approach, starting with careful static measurements, the model is built up using a 
combination of regression and output error methods. In [24, 32], it was shown how nonlinearities in the static 
aerodynamic measurements can contribute to higher order harmonics, thus demonstrating the importance of building 
up the aerodynamic models systematically and progressively from static to dynamic. A number of model structures 
and identification techniques were presented again in [33]. Another approach presented in [34] makes use of 
differential equations representing internal states that correspond to different kernels of a Volterra series. This 
approach includes a modeling philosophy that requires models remain compatible with classical simulation methods 
using look-up tables for aerodynamic data. A similar philosophy is used in NASA LaRC methods in that adding 
unsteady terms with clear physical interpretation and retaining conventional aerodynamic derivatives, for which a 
large data base and physical understanding has been built, provides a readily understood application to design and 
simulation.  

Advances in computational power have allowed significant progress in aerodynamic modeling of nonlinear 
unsteady aerodynamics. Researchers have followed two paths to address the nonlinear unsteady modelling problem: 
a numerical path using high fidelity Computational Fluid Dynamics (CFD) techniques and an experimental path using 
direct measurements of aircraft responses in flight or scale models in wind tunnel dynamic tests. An approach that 
facilitates comparisons of wind tunnel and CFD results is to consider aircraft dynamic characteristics in the form of a 
general aerodynamic model identified from those results. Beyond comparisons, advances in both numerical and 
experimental techniques have created opportunities for the combination of these approaches to make significant 
improvements in handling more difficult aircraft modelling problems.  

Realizing the opportunities from combining analytical and experimental approaches requires use of SID. SID 
provides a methodology for producing data with sufficient information content to allow model identification. Aircraft 
SID is an area involving a number of modeling and measurement science disciplines and the subject is well 
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documented in [35]. The general steps used in aircraft SID along with modifications for unsteady modeling are 
discussed in Section IV. One key step is model validation where models are evaluated as predictors. The best model 
validation results are demonstrated by adequate prediction of aircraft responses in flight test. LaRC research in flight-
test methods for real-time modeling from both subscale and full-scale air vehicles is summarized in [30, 36]. However, 
when flight test validation data are not available or practical to obtain then CFD predictions and ground-based 
experimental data are often compared to corroborate the results. Often this comparison is limited to time history 
comparisons. More insightful comparisons can be made by considering model parameters identified from both sets of 
time history data. This comparison requires estimation of parameter mean values and their uncertainty bounds in order 
to assess differences. Model parameters are key elements of flight dynamics simulations, stability analysis, and control 
design.  

Although it is not common practice for wind tunnel or CFD results to be presented with associated error bounds 
for validation comparisons, some efforts, using various techniques, have been made to improve this shortcoming. 
Besides conventional methods, Design of Experiments (DOE), Statistical Process Control, and SID techniques have 
been applied to this problem [37-45]. Although CFD results do not contain random errors, there are potentially large 
uncertainties due to systematic and modeling errors. Significant uncertainty, for example, can be generated where 
sensitivities to turbulence models, grid selection, or time steps, are large. Application of DOE applied to computational 
studies is presented in [46]. Sources of uncertainty for ground-based experiments are generally known and can include 
a variety of systematic, modeling, and random errors such as direct measurement uncertainty and similitude errors. A 
body of knowledge commonly referred to as DOE [47] that addresses uncertainty problems in a statistically rigorous 
way provides substantial guidance for the experiment design problem. DOE has been developed over many decades 
and is used in many engineering and science applications. It can be used in conjunction with aircraft SID techniques 
and is especially effective for complex aircraft studies [21].  

SID efforts also lead to specific demands on test techniques and test facility capabilities. The demand for more 
general, higher fidelity, models has highlighted some limitations of conventional approaches. For example, in ground-
based dynamic wind-tunnel experiments where single frequency sinusoidal inputs are typically used, wide-band inputs 
have been shown to be more effective and less costly since fewer runs are required [18]. However, development of 
advanced test facilities with more automation and more advanced programmable motion capability has not been 
widely pursued [48]. CFD offers an opportunity to ameliorate a number of these limitations.   

Initial evaluations and comparisons of stability and control (S&C) characteristics can be made from well-
established conventional dynamic wind-tunnel testing methods. This testing provides time histories of aerodynamic 
coefficients of an aircraft scale model while undergoing one-degree-of freedom forced oscillations about its body axes. 
Test conditions typically include selected nominal angles of attack, amplitudes, and frequency conditions. For 
dynamic testing, Reynolds number selection is typically limited to capabilities of the wind tunnel and dynamic test 
rig. Analysis of these data provides conventional in-phase and out-of-phase coefficients. Since standard errors can be 
estimated using the identification methodology, the analysis will facilitate more meaningful comparisons between the 
two sources of data. This approach suggests the importance of experiment design to allow identification of 
aerodynamic phenomenon and validation modeling results. In section IV examples of these types of comparisons are 
provided.    

Because of participation by NASA in a 3-year NATO/RTO AVT-161 Task Group titled "Assessment of Stability 
and Control Prediction Methods for NATO Air & Sea Vehicles," a unique opportunity was afforded to the authors to 
explore and validate a range of strategies for creating CFD-derived nonlinear flight simulation models within a 
collaborative international environment [49]. The focus of AVT-161 was to investigate the applicability of current 
CFD tools for predicting S&C characteristics of air and sea vehicles. As summarized in [49] the team made remarkable 
progress through the leveraged efforts of many engineers and researchers from 9 countries by 1) conceiving a generic 
unmanned combat air vehicle (UCAV) focus configuration (Fig. 1a) called the Stability and Control Configuration 
(SACCON), 2) designing and building a wind-tunnel model, 3) conducting two test entries in Germany and one in the 
United States [40, 50], and 4) conducting and coordinating several multinational CFD studies. Experimentalists within 
the AVT-161 team conducted dynamic wind-tunnel tests on SACCON undergoing forced oscillation in pitch, roll, 
and yaw to measure the dynamic stability and aerodynamic characteristics [40, 51-52]. Other team members ran 
parallel dynamic computational studies following a similar approach of modeling SACCON undergoing pitch, roll, 
and yaw oscillation with their respective CFD tools [53-59]. The collective experiences from these studies confirmed 
the difficulty of achieving accurate and efficient computation of dynamic stability characteristics of highly nonlinear 
flows, which are highly sensitive to choice of flow solver, characteristic time steps, grid size, and turbulence models.  
Fortunately, a 3-year follow-on task group AVT-201 [60] pursued exploration of CFD modeling issues of the 
SACCON, and development of the techniques for extracting dynamic stability derivatives for flight simulation models 
from CFD solutions. Only a limited number of the previous AVT-161 studies addressed the reduced-order modeling 
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of SACCON dynamic S&C characteristics [56, 59, and 61]. In support of the AVT-161 effort, two studies were 
completed at LaRC to define best practices for CFD applied to S&C applications. One study considered the NASA 
GTM transport configuration [62] and the other considered the SACCON UAV configuration [53]. These best 
computational practices and SID unsteady modeling methods facilitated a first comparison of high-fidelity S&C 
dynamic models, including uncertainty bounds, from experimental roll forced-oscillation data and computational data 
simulating the same experiment for the SACCON configuration [41]. Application of both CFD and SID was again 
used to advantage in investigation of both low and high angles of attack aerodynamic models for the NASA GTM 
configuration [63]. Particular attention was given to unstable roll damping in the stall region where the sub-scale flight 
model presented an unfavorable wing-drop tendency. The complete aerodynamic model, estimated from dynamic 
wind tunnel data and computational data, was estimated with a focus on unsteady and unstable regions. In this study, 
data filtering, signal/noise, and bias errors were investigated to further improve the unsteady modeling methodology. 
A summary of CFD tool development at LaRC, addressing aircraft loss-of-control, is given in [64]. 

A number of techniques have been developed to improve modeling of nonlinear unsteady conditions and to take 
advantage of the integration of CFD, SID, and DOE technologies. In [65] the sensitivities of systematic errors on 
stability derivatives using a high fidelity simulation of a forced-oscillation test was done using both DOE and Monte 
Carlo methods. In [21] modeling of a complex aircraft with 23 factors required DOE to allow an efficient and 
statistically rigorous experiment to be designed. In [66] the impact of a flexible test rig, sting, and balance was 
investigated. This initial study was motivated by the concern that higher order models are needed to capture more 
severe nonlinearities and the possibility exists that aerodynamic and structural dynamic responses may be confounded 
in some cases. The problem can be exacerbated in the presence of systematic and random measurement errors.  

This paper supports NASA’s goal of improving aviation safety especially under adverse conditions such as loss of 
control or when nonlinear unsteady aerodynamic responses are present. Recent successful methods are presented that 
facilitate improved modeling fidelity for analysis, control design, and simulation. The model identification problem 
for conventional one-degree-of-freedom motion in wind tunnel forced-oscillation experiments is described. 
Mathematical model structures are presented that include conventional static and rotary dynamic terms but are 
extended by including indicial functions to represent unsteady responses. The goal has been to maintain the 
conventional stability and control derivative structure to capitalize on the large engineering knowledge base built 
around that structure. Model parameters describing aerodynamic properties of the system under test can be estimated 
using a least-squares principle. The resulting estimators form linear or nonlinear regression problems that can be 
formulated in the time or frequency domain. Five parameter estimation methods are described and demonstrated on 
experimental data from wind tunnel and water tunnel experiments. These methods are harmonic analysis, nonlinear 
regression, two-step linear regression, equation error, and output error. Model validation of these techniques is 
demonstrated with examples using SACCON, a generic UAV, Fig. 1a, two scale models of the F-16XL, a 2.5% scale 
water tunnel model, Fig. 1b, and an 18% scale wind tunnel model not shown, and the NASA Generic Transport Model 
(GTM), Fig. 1c.  

II. Mathematical Model Structures 
Estimation of aerodynamic parameters from response data requires postulation of a mathematical model of the 

aircraft dynamics. The mathematical model includes both the aircraft equations of motion and the equations for 
aerodynamic forces and moments, known as the aerodynamic model equations. For most of the nominal operating 
envelope, where the aerodynamic flows are relatively attached and steady in behavior, aerodynamic model equations 
are usually developed using time-invariant linear terms (stability and control derivatives). In off-nominal cases these 
terms often must be generalized to include time-dependent and nonlinear terms. Results from numerous studies, such 
as [18], have shown the dependence of aerodynamic parameters on frequency. This dependency contradicts the basic 
assumption that stability derivatives are time invariant. Because unsteady aerodynamics are expressed by frequency 
dependence, the aerodynamic model equations are effectively formulated using terms such as indicial functions or 
“step-response” functions to capture the unsteady response [3, 11].  

 General Aerodynamic Model 
A general form of the aerodynamic model that allows a very broad range of indicial functions when required was 

suggested in [32], and earlier in [8] and [3]. Assumptions used for this general model impose only a few limitations. 
For this model, only rigid-body dynamics are considered along with relatively constant flight path properties such as 
density, viscosity, and dynamic pressure. Assuming aerodynamic coefficients are single-valued functions of aircraft 
states α, β, p, q, and r, then according to Ref. [3], these coefficients can be formulated as    
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where Ca(t) is a coefficient of aerodynamic force or moment, Ca(0) is the value of the coefficient at initial steady-state 
conditions, and Caξ(t) is a vector of indicial functions whose elements are the responses in Ca to unit steps in ξ. ξ is 
defined as 

 1 2[ ] [ ]Tp q rξ ξ ξ α β= =    

and   is the characteristic length ( / 2c=  or / 2wb= ). The indicial functions approach steady-state values with 
increasing values of the argument (t-τ). To indicate this property, each indicial function can be expressed as 
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F ξ
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zero as ( )t τ− → ∞ . When Eq. (2) is substituted into Eq. (1) the terms involving the steady-state parameters can be 
integrated and Eq. (1) becomes 
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where ( ; ( ))aC tξ∞ is the total aerodynamic coefficient that would correspond to steady flow with ξ fixed at the 
instantaneous values ξ(t). 

1aF ξ and 
2aF ξ are vectors of deficiency functions. Further simplification of Eq. (3) is 

achieved by assuming that the coefficients Ca are linearly dependent on the angular rates 2ξ . Applying a Taylor series 
expansion about 2 0ξ =  to terms in Eq. (3) and keeping only the linear terms results in 
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or in simplified notation 
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where a(α,β) and b(α, β) are polynomials in (α, β). When the differential operator, D ≡ d/dt, is introduced, then the 
first convolution integral in Eq. (4) can be expressed as 
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Equations (8) and (9) represent first-order linear differential equations 
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and similarly for ( )tβη . Substituting Eq. (8) and Eq. (9) into Eq. (4) results in 
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Depending on how the aerodynamic behaviors present during testing, it is possible that some terms will reflect a 
nonlinear character while other terms are linear. It was often the case, for the configurations considered in this paper, 
that nonlinear characteristics were found primarily in the static and steady-flow dynamic components of the model, 
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and only a linear form of the unsteady portion of the aerodynamic model was required. The linear aerodynamic forms 
for the three major terms (static, steady-flow dynamic, and unsteady) are presented in the next section.   

 Linear Aerodynamic Model 
Linear aerodynamic model equations can be obtained from Eq. (11) by considering small perturbations in state 

variables from steady-state trim conditions. In this case the longitudinal coefficients can be expressed in terms of (α, 
q) and the lateral-directional coefficients in terms of (β, p, r). The resulting equation for the longitudinal aerodynamic 
coefficients is  
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A state space form of Eq. (12a) is suggested by introducing 
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and applying the Leibnitz integral rule, then the linear state space form is 

 
1( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )a a aq

t b t t

C t C t C q t a t
Vα

η η α

α η

= − +

= ∞ + ∞ −

 



 (14) 

The four unknown parameters, 1( ),  ( ),  ,  a aqC C a bα ∞ ∞ , in Eq. (14) can be estimated, in principle, from 

measurement time histories of , ,aC α α  and q. If these data are obtained from a one-degree-of-freedom oscillatory 
test in the wind tunnel (or water tunnel), then qα =  and the aerodynamic model equations can be expressed in the 
form of a transfer function  
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where s is the Laplace transform parameter and 
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A commonly used model structure that defines in-phase and out-of-phase derivatives obtained in conventional 
forced-oscillation experiments is suitable for the analysis of oscillatory data and obtaining initial observations of the 
unsteady aerodynamic character of the responses. Considering the longitudinal axis and linear aerodynamic case, the 
steady solution of Eq. (12a), with the nominal oscillation point (0)aC  removed, is 

 ( ) sin( ) cos( )a A a A aqC t C t kC tαα ω α ω= +  (17) 

where /k cf Vπ=  is the reduced frequency. For this conventional model form with linear aerodynamics, ( )aC t  is 
assumed to be functions of ,  ,  ,qα α  and q . The in-phase and out-of-phase components, aC α  and aqC , can be 

expressed in terms of steady flow terms ( )aC α ∞ , ( )aqC ∞  and acceleration terms or unsteady equivalent terms as 

 
2( )

( )

a a aq

a a aq q

C C k C

C C C
α α

α

= ∞ −

= ∞ +





 (18) 

In order to explain the variation of the in-phase and out-of-phase components with frequency these components were 
expressed in terms of deficiency functions, as in Eq. (12a). In [8, 13] the model for these components has the form 

 

2 2
1

2 2
1

1
2 2
1

1

1

a a

a aq q

kC C a
k

C C a
k

α α
τ

τ
τ
τ

= −
+

= −
+

 (19) 

where 1 12 /V cbτ =  is an aerodynamic time constant. In these aerodynamic model equations there are four unknown 
parameters, a , 1b  (or 1τ ), aC α , and aqC , given in-phase and out-of-phase measurements, aC α , aqC .  

For one degree of freedom rolling motion in the tunnel, the lateral coefficients are assumed to be functions φ and 
p.  In this case the roll angle and sideslip angle are related by the equation 

 1( ) sin (sin sin ( ))t tβ α φ−=  (20) 

The state-space form is  

 
1( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2a a ap

t b t t
bC t C t C p t a t
Vβ

η η β

β η

= − +

= ∞ + ∞ −





 (21) 

A steady oscillatory response for Eq. (12b) can be obtained as 

 ( ) sin( ) cos( )a a A a ApC t C t C k tβ φ ω φ ω= +  (22) 
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where φΑ is the amplitude of roll oscillation, and aC β
 and apC  are the in-phase and out-of-phase components, 

respectively. These components are related to the model parameters [8] by the equations 

 

2 2
1

0 02 2
1

1
02 2

1

( )sin sin
1

( ) sin
1

a a

a ap p

kC C a
k

C C a
k

β β
τ

α α
τ

τ
α

τ

= ∞ −
+

= ∞ −
+

 (23) 

For one degree of freedom yaw oscillations in the tunnel, directional coefficients are assumed to be functions of ψ 
and r, where yaw and sideslip angles are related by the equation 

 1( ) sin ( cos sin ( ))t tβ α ψ−= −  (24) 

The state space equations can be written as 

 
1( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2a a ar

t b t t
bC t C t C r t a t
Vβ

η η β

β η

= − +

= ∞ + ∞ −





 (25) 

and the corresponding in-phase and out-of-phase components are expressed as 

 

2 2
1

0 02 2
1

1
02 2

1

( ) cos cos
1

( ) cos
1

a a

a ar r

kC C a
k

C C a
k

β β
τ

α α
τ

τ
α

τ

= ∞ −
+

= ∞ +
+

 (26) 

There are a number of parameter estimation techniques appropriate for the model structures presented here and a 
number of corresponding test techniques to obtain data (measured or simulated) with sufficient information content. 
Section IV presents the methods found effective for that purpose.  

III. Experimental and Computational Data 
A number of static and dynamic experiments were performed for several aircraft configurations in both wind and 

water tunnels in support of unsteady modeling research. As part of the development of computational methods, 
measurement predictions of several of these experiments were also made to provide simulated dynamic data for 
comparison and allow estimation of aerodynamic models. Examples presented use measured oscillatory data generated 
by different input forms and obtained at different angles of attack, amplitudes, and frequencies. From carefully 
designed experiments these data provide information for determining adequate aerodynamics models. The models 
demonstrate each of the postulated forms, presented previously, with parameters that can be estimated using the 
methods discussed in the next section. Both conventional and advanced modeling methods are demonstrated and used 
to identify aerodynamic model equations as well as in-phase and out-of-phase coefficients. Estimation of uncertainty 
values in wind tunnel and CFD data are limited to standard errors obtained from parameter estimation using system 
identification methods. For CFD simulated data, the model uncertainty will reflect uncertainty due to modeling error 
and turbulence model selection; uncertainty related to grid size and time steps choices are not included in this paper. 

IV. Model Identification 
Different aircraft configurations can have dramatically different aerodynamic behaviors. Which part of the flight 

envelope is being modeled and the intended use of the models can also have a significant impact on model structure 
requirements. Consequently, different test techniques, estimation algorithms, and inputs are needed to identify the best 
mathematical model. Experiment design is the first step and a critical step in the model identification process in order 
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to efficiently obtain dynamic data with sufficient information content. This applies to any test whether it is being done 
in flight, ground-based, or with analytical methods. Utilizing DOE methods can substantially improve the experiment 
design process, especially where a complex aircraft with many factors is being tested. A flow chart for aircraft system 
identification is represented in Fig. 2. The chart presents the general identification process followed in building a 
model from measured data. This process is well known and described in [35] but some aspects should be emphasized 
when analyzing the nonlinear unsteady problem. The choice of SID techniques and their order of application can differ 
for the unsteady problem. The blue arrows and boxes highlight those differences. Harmonic analysis is the first step 
required for the unsteady modeling problem. This step reveals under what conditions unsteady behavior is present and 
can indicate the degree of nonlinearity. The harmonic analysis block, in Fig. 2, lists information gained by harmonic 
analysis that helps resolve the model structure determination problem. In addition to using DOE methods for 
experiment design, specialized inputs are useful for the unsteady modeling work. The specialty inputs block presents 
three basic input types: single-frequency for diagnostics [32], wide-band for efficient modeling [18], and ramps for 
model validation [19]. Each provides unique information in the modeling process covering both estimation and 
validation requirements. The parameter estimation box highlights the different estimation methods needed depending 
on how the aerodynamics present under test conditions.  

The degree of unsteady and nonlinear behaviors are commonly seen in the in-phase and out-of-phase components. 
Since each of the three major terms (static, steady-flow rotary dynamic, and unsteady) can be linear or nonlinear 
independently of the other terms, the determination of model structure for each term must be carefully addressed.  
Harmonic analysis is a key part of the diagnostic process that determines which of the four aerodynamic conditions 
(L-S, L-U, NL-S, NL-U) is present and how each of the three major terms should be characterized. The modeling 
philosophy represented by the model structure shown in Eqs. (14, 21, or 25) indicates a preference to keep 
conventional S&C terms for the static and steady rotary dynamic terms but adds a third term for an unsteady 
component when required. This approach retains the large knowledge base built up around stability and control 
derivatives but adds an additional term to capture any unsteady responses. The latter term is often sufficient in the 
form of a single-pole transfer function. Since any of these three major terms may be needed to represent linear or 
nonlinear aerodynamics depending on the particular aircraft, harmonic analysis is needed to systematically determine 
where in the envelope each term in linear or nonlinear form is required.   

 Harmonic Analysis 
Ground-based dynamic tests are commonly performed as forced-oscillations about aircraft body axes at selected 

angles of attack, reduced frequencies, amplitudes, and Reynolds numbers. Typically, inputs are single-frequency 
sinusoidal variations of the Euler angles and outputs are non-dimensional aerodynamic coefficients of the forces and 
moments. Efficient wide-band inputs have been demonstrated [18] for this type of test and analysis. An example 
follows in section IV-B. A progressive approach to unsteady modeling suggested in [32] recommends, after static 
models have been obtained, that dynamic testing begin with single-frequency, one-degree-of-freedom, small-
amplitude motions, over large range of angle of attack and sideslip. Single-frequency inputs support analysis that 
differentiates between nonlinear responses where higher-order harmonics are present versus a linear response where 
only the single-input frequency is present in the response. Using harmonic analysis these tests will reveal any nonlinear 
or unsteady (frequency dependent) regions in the flight envelope. The conventional linear aerodynamic model, 
commonly assumed in forced-oscillation experiments, is expressed as 

 
2

a a a aq aqC C C C q C q
V V Vα αα α  ∆ = + + +  

  

  

   (27) 

Equation (27) is an example for the longitudinal axis but similar expressions can be written for each axis. Under 
harmonic inputs, this model leads to the standard expressions for the in-phase and out-of-phase coefficients. 

 
2           

            

a a aq

a a aq q

C C k C a N or m

C C C a N or m
α α

α

= − =

= + =





 (28) 

 
A more general mathematical model for aerodynamic coefficients, undergoing periodic motion, is 
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 ( ) ( ) ( )0
1 1

cos sin
m m

a j j
j j

C t A A j t B j tω ω
= =

= + +∑ ∑  (29) 

where 2 fω π= and A0, A1, B1, …, Am, and Bm are the Fourier coefficients and ( )aC t  represents one of the 
aerodynamic coefficients. An assumption is made that measurements are obtained as 

 ( ) ( ) ( ),      1, 2,3,...,a aEC i C i i i Nν= + =  (30) 

where ( )aEC i  are the measured values of ( )aC t and ( )iν  is white measurement noise with zero mean and constant 

variance, 2σ . One approach to obtain the in-phase and out-of-phase components is using Fourier transform. For the 
longitudinal case,  

 

2 ( )sin  

2 ( ) cos  

n Tc
a a

oA c
n Tc

a aq
oA c

C C t t dt
n T

C C t t dt
kn T

α ω
α

ω
α

= ∆∫

= ∆∫

 (31) 

where ( )aC t∆  is the change in response from the nominal position, 2T π
ω

=  , and cn  is the number of cycles of 

oscillation. In practice the number of cycles required must be determined from the data, however, from this body of 
work, 6 full cycles is often a practical minimum. Alternatively, a least squares (LS) method of harmonic analysis [24] 
can be applied to the time histories of measured aerodynamic coefficients to allow estimation of in-phase and out-of-
phase coefficients. As follows, a LS analysis provides estimates of the Fourier coefficients, their standard errors, and 
the coefficient of determination, R2. Minimizing the LS criterion 

 2

1
( ) [ ( ) ( )]

N
LS a aEi

J C i C iθ
=

= −∑  (32) 

where θ  is the vector of unknown parameters, (A0, A1, B1, …, Am, Bm). The LS parameter estimates for Eq. (29) are 
given by 

 

( )

( )

( )

0
1

1

1

1ˆ

2ˆ cos

2ˆ sin

N
aEi

N
j aEi

N
j aEi

A C i
N

A C i j i
N

B C i j i
N

ω

ω

=

=

=

= ∑

= ∑

= ∑

 (33) 

The corresponding parameter variances are 

 
( )
( ) ( )

2 2
0

2 2 2

1ˆ

2ˆ ˆ
j j

s A
N

s A s B
N

σ

σ

=

= =
 (34) 

for all j.  The estimate of variance 2σ  is 
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 2 2

1

1 ˆ[ ( ) ( )]
N

a aEi
s C i C i

N =
= −∑  (35) 

where ˆ ( )aC i  follows from Eq. (27) by applying final parameters estimates. The adequacy of the model given by Eq. 
(29) can be assessed by R2 for each harmonic added to the model. R2 indicates the fraction of variation in the measured 
data explained by the model.  R2 is expressed as 

 2 21 /SS ,            0 1E rR SS R= − < <  (36) 

where ESS   is the residual sum of squares defined as  

 2

1
ˆ[ ( ) ( )]

N
E a aEi

SS C i C i
=

= −∑  (37) 

and rSS  is the total sum of squares defined as  

 2

1
[ ( ) ( )]

N
r a aEi

SS C i C i
=

= −∑   (38) 

where ( )aC i   is the mean value.  
For the pitch oscillation case, assuming sinA tα α ω= , it follows that a model with linear aerodynamics, the in-

phase and out-of-phase components of ( )aC t , can be expressed in terms of the 1st harmonic coefficients A1 and B1 as 

 

21

1

          

            

a a aq
A

a a aq q
A

BC C k C a N or m

AC C C a N or m
k

α α

α

α

α

= = − =

= = + =





 (39) 

where /k cf Vπ=  is the reduced frequency. The second expression shown for each component identifies the direct 
relationship of the 1st harmonic to a conventional linear aerodynamic model commonly assumed in forced-oscillation 
testing.  

For roll oscillations, assuming sinA tφ φ ω=  and sinβ φ θ= , it follows that a 1st order harmonic model has 
components 
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sin         ,  ,   n

sin            ,  ,   n

a a ap
A

a a ap p
A
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AC C C a Y or
k

β β

β

θ
φ

θ
φ
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







 (40) 

and for yaw oscillations, assuming sinA tψ ψ ω=  and cosβ ψ θ= − ,  
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1
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a a ar
A

a a ar r
A
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β β
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


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

 (41) 
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Examples of harmonic analysis and estimation methods are discussed together in the next section to demonstrate 
how harmonic analysis guides the selection of model structure and method of estimation. Examples in this section 
highlight the diagnostic features of harmonic analysis.  

Since the first harmonic corresponds to a linear aerodynamic model and the conventional in-phase and out-of-
phase components, R2 will reflect the degree to which the linear model explains the data. As follows from Eqs. (36-
38), the estimates of R2 are influenced by the value and number of Fourier coefficients (harmonic order) in Eq. (29) 
and the measurement noise in ( )aEC i . Because the harmonic sinusoids are mutually orthogonal, the estimates of jA  

and jB  will not change with the number of model terms included in Eq. (29). Changes will only appear in the 
corresponding standard errors and residuals defined by Eq. (37). This makes R2 an effective diagnostic tool to discern 
the adequacy of a linear first-order model against nonlinear higher harmonic models.  

If the static and steady-flow damping terms are assumed to be nonlinear and well represented by higher order 
polynomials, then the order determined by harmonic analysis also implies the order of the polynomial required. For 
example, consider a conventional harmonic model for rolling moment analysis 

 
2

l l lp lplC C C C p C p
V V Vββ β β  ∆ = + + +  

 




  



  (42) 

In this case, assuming sinA tφ φ ω= and sinβ φ θ= , it follows that a 1st order harmonic model is 

 2( sin )sin ( sin )cosl A l lp A lp lC C k C t k C C tββφ θ ω φ θ ω∆ = − + +




 (43) 

If a cubic nonlinearity exists in the static term, such that Eq. (21) contains the term 3
3C

β
β



, then this term produces 

a cubic-harmonic sine term. Using the identity, 3sin 1/ 4[3sin sin 3 ]t t tω ω ω= − , it can be shown that both 1st and 3rd 
harmonic terms are added to the model to produce 

 

2 2 3
3

3 3
3

( sin (3 / 4) sin )sin
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A lp l

A l

C C k C C t

k C C t

C t

β β

β

β

φ θ φ θ ω

φ θ ω

φ θ ω

∆ = − +

+ +

−





. (44) 

Eq. (44) shows that the cubic nonlinearity expresses itself as both a 3rd order harmonic and an additional component 
added to the 1st harmonic term. A similar analysis can be done for harmonics of different order and the same analysis 
can be applied to the steady-flow damping term. Thus, the presence of a 3rd order term in the static data or in the 
steady-flow damping term will result in a 3rd harmonic during a general harmonic analysis. Unfortunately, the unsteady 
term does not lend itself to this type of analysis. In general independent information about each of the three major 
model terms is required to determine the source of higher harmonic response. Fortunately, the three major terms can 
be independently characterized: steady flow (static) terms can be measured independently in a static test; the two 
major dynamic terms are measured together in dynamic tests however one represents steady flow (frequency 
independent) and the other represents unsteady flow (frequency dependent). Details of this more general analysis are 
provided in [32].    

Applying harmonic analysis to roll oscillation data for the NASA GTM produces the graphic shown in Fig. 3. 
Without detriment to this discussion, ordinate values are removed on all GTM plots in order to maintain proprietary 
agreements. Analysis was performed on data pre-filtered at 4 Hz. The filter was applied in both directions to ensure 
no lags were introduced into the response data. Filtering issues are addressed in detail for this case in [63], however, 
it was found that the in-phase and out-of-phase components were relatively insensitive to filter cutoff frequencies 
above 2 Hz. In this figure the in-phase and out-of-phase components and the coefficient of determination are plotted 
against angle of attack for five frequencies and one selected roll-oscillation amplitude. This experiment was conducted 
in the NASA Langley 14x22 Wind Tunnel. Model geometry is given in Fig. 1c. This type of plot highlights the location 
of unsteady behaviors. The plot shows little frequency dependence (unsteady behavior) for the in-phase component 
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(effective dihedral, lC β
) while the out-of-phase component (damping term, lpC ) presents unsteady behaviors at α0 

= 12° and for 24° ≤ α0 ≤ 30°. Some unsteady behavior is also present for α0 > 40°. Roll damping instabilities are 
present at α0 near 12°, 14°, and above 40°. R2 shows substantially low values in the stalled flight region for 12° ≤ α0 
≤ 40°. This implies that either a linear model is not satisfactory or significant noise levels are present. Final 
determination of model nonlinearity is accomplished by considering measurement and harmonic model time histories. 

To demonstrate the diagnostic process, time histories of response variables versus input variables are shown in 
Fig. 4 for the three lowest R2 cases at α0 = (14°, 22°, 30°) and for low and high frequencies. For these types of plots a 
regular ellipse corresponds to a linear aerodynamic response [67]. In order to highlight ellipse shapes the scales are 
not the same. The left side presents plots for the low frequency cases at f = 0.06 Hz, and the right side shows high 
frequency cases at  f = 0.92 Hz. 

The first case at α0 = 14°, demonstrates a nonlinear response with steady dynamics (NL-S). In this case the very 
low R2 value for the high frequency data (Fig. 3) correctly indicated a nonlinear response since the high frequency 
plot for lC  is an irregular ellipse (Fig. 4a), and linear aerodynamics can only produce regular ellipses. The linear 
response from the 1st harmonic model is shown as a green ellipse and the 3rd order harmonic, nonlinear response, as a 
red ellipse. Nonlinear responses are often expected in the lateral-directional axes where a strong cubic nonlinearity 
typically exists in the static terms with respect to sideslip. This case is also a good example of where engineering 
judgment is required. Although the response at high frequency is nonlinear, respect for the very small values of the 
derivatives may lead to a conclusion that the added complexity of a nonlinear model is not warranted. R2 does not 
account for overall magnitude of the response variables.  

The second case at α0 = 22°, demonstrates a linear response with steady dynamics (L-S). In this case the low R2 
value occurred at the lowest frequency (Fig.3). In this case higher noise levels reduced R2. Plots in Fig. 4b show that 
linear models match the measured data reasonably well except for the low frequency case of the rolling moment, 
where the response measurement has substantial noise in spite of filtering and averaging the responses over numerous 
cycles. In this case, although the noise has reduced the R2 metric, the estimated linear model is still an adequate 
representation of the response.  

The third case at α0 = 30°, presents a linear response with unsteady dynamics (L-U). In this case, where an unsteady 
model is required, the low R2 value occurred at the lowest frequency (Fig. 3). Plots in Fig. 4c show linear models 
match the measured data reasonably well except for the low frequency case of the rolling moment where the response 
measurement has substantial noise. Similar to the last case, although noise has reduced the value of R2, the estimated 
linear-unsteady model is still a reasonable representation of the response.  

For the set of amplitudes and frequencies considered in this example using the NASA GTM, the fourth modeling 
case NL-U was not observed for the lateral axis; however, it did present in the directional axis. Details of the NL-U 
case for GTM was presented in [27], where a third order harmonic was required to model the cubic response in yawing 
moment to oscillations in sideslip. The source of the nonlinearity was found to be in the static term because of a strong 
cubic anti-symmetric relationship of yawing moment to sideslip. This type of static nonlinearity is common in the 
lateral-directional axes. A more general example of the NL-U case, with nonlinear models in all three major terms, is 
presented in Section IV.B using F-16XL data.  

 Estimation Methods 
A number of approaches are available for estimating parameters in aerodynamic model equations. Methods, such 

as U.S. Air Force DATCOM, are based on extensive rules for aerodynamic dependencies and aircraft geometry. This 
approach is limited to low angle of attack and low rotational rate cases. Analytical methods, such as CFD where 
general physics-based equations define the mathematical model, are applicable to the full aircraft flight envelope. 
However, CFD applied to S&C problems is still an area of research [60]. Although these methods work well to varying 
degrees, the best aerodynamic predictions are still obtained using experimental methods. Full-scale flight experiments 
provide the most direct measurements of aerodynamic behaviors but this is the most expensive approach and not 
available in early design phases. The wind tunnel provides the next best approach with current technology; however, 
this approach has a number of difficulties such as scaling and tunnel effects. Another difficulty for tunnel testing is 
that often certain dynamic tests are not possible or easily produced in tunnels with conventional test rigs.   

An opportunity to improve modeling technology combines both wind tunnel and CFD approaches. In this paper 
the aerodynamic parameters are estimated primarily from wind tunnel dynamic tests to demonstrate modeling 
methodology. However, model estimation results from CFD simulations are also provided to highlight comparisons 
and demonstrate some of the successes using CFD applied to S&C problems. 
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1. Nonlinear Regression 
This example highlights the L-U case with frequency dependence present only in the out-of-phase component. 

Harmonic analysis performed on pitch oscillatory data is shown in Fig. 5 for the NASA Generic Transport Model 
(GTM). Ordinate values are removed to maintain proprietary agreements for this model. For this configuration the in-
phase component, NC α , does not vary with frequency but without an unsteady component, its value agrees closely 

with NC α from steady measurements. On the other hand the out-of-phase component, NqC , shows a strong variation 

with frequency and presents an unsteady region for f < 0.43 Hz and 10° < α0 < 50°. Values of R2 are very good over 
the full range of angle of attack but indicate limited degradation of the linear model for α0 > 35°. Given this set of 
circumstances and frequency dependent measurements, a suitable approach for estimating the three unknown 
parameters, a , 1τ , and aqC , given in Eq. (19), is to use a nonlinear regression method [27]. For this case a general 

model is formed as  

 ( ) [ ( ), ] ( ),      1, 2,...,z j g x j v j j mθ= + =  (45) 

where ( )x j  is a vector of regressors computed from measured data at the jth data point, g is a nonlinear function of 
( )x j , and unknown parameters are given by the vector, θ . The least-squares estimator can be obtained by minimizing 

the sum of squared errors  

 2

1
( ) { ( ) [ ( ), ]}

m
NR

j
J z j g x jθ θ

=
= −∑  (46) 

As a check on regression fit, parameter estimates are applied to Eq. (19) and used to generate the plot in Fig. 6. The 
figure shows a good fit between measured and estimated values of NqC  at α0 = 18°. As a check on model prediction, 

Fig. 7 shows the variation of CN with α at f = 0.86 Hz, αA = 10°, and two nominal values of α0 = (14°, 26°). In both 
cases the shape of the predicted data forms a regular ellipse reflecting the underlying linear aerodynamic model 
structure. The measured CN shows some deviation from linear behavior (irregular ellipse), in the pre-stall and stall 
regions.  
2. Two-Step Linear Regression 

This regression method [24] can be applied in L-U cases where both the in-phase and out-of-phase components 
present frequency dependence and a linear aerodynamic model is adequate. An aerodynamic model of an aircraft 
performing a one degree-of-freedom oscillatory motion about one of its body axes can be formulated in terms of the 
in-phase and out-of-phase components for rolling motion as in Eq. (23) or in a compact form as 
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 (47) 

where  
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 (48) 

and subscript a  denotes appropriate force or moment coefficient. The corresponding equations for pitching motion 
are given in Eq. (19) or as  
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and for yawing motion in Eq. (26) or as  
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With the expression,  
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 (51) 

Considering rolling motion, Eq. (47) can be rearranged into a set of equations with m different values of k as 

 ( ) ( )0 1 ,      1, 2,...,y j a a x j j m= + =  (52) 

where  

 ( ) ( )0 1

1 1

,

( ) sin

a ap

a ap

x C y C

a C a a C

a

β

β α

τ

= =

= ∞ + − ∞
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 (53) 

In the first step a linear regression is used in estimation of parameters 0a and 1a in Eq. (52) from measured in-phase 
and out-of-phase components at m different frequencies, m > 2.  

The second step of regression follows from Eqs. (47-48) replacing 1τ  by its estimated value. The resulting 
equations are 
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where for rolling oscillations these terms are  
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Similar expressions can be written for pitching and yawing oscillations. Development of regression equations and 
estimator properties can be found in [35].    

Application of the two-step regression method to roll oscillatory data was demonstrated for an 18% scale F-16XL 
aircraft (2.5% scale model shown in Fig. 1b) in the NASA Langley 14x22 Wind Tunnel. Harmonic analysis, shown 
in Fig. 8, indicates unsteady behavior (frequency dependence) for 25° ≤ α0 ≤ 45° and R2 confirms the predominantly 
linear behavior with the exception of α0 = 45°.  Linear dependence of in-phase and out-of-phase components, defined 
by Eq. (52), is confirmed in Fig. 9. The slope of these data define time constant, τ1. Variation of the parameter estimates 
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and 2σ error bounds with α are shown in Fig. 10. A comparison of measured and predicted rolling moment coefficient 
is shown in Fig. 11.  

Demonstrating the utility of CFD simulated dynamic data and SID in application to forced-oscillation experiments 
was first accomplished in [41]. In this case the two-step regression method was applied to roll oscillatory data from 
tests reported in [40] for the SACCON aircraft (Fig. 1a).  Harmonic analysis, Fig. 12, shows the L-U case was found 
at α = 20° and L-S for the other test points. Application of the two-step regression method to wind tunnel data produced 
parameter estimates and their standard errors, Table I.  

 
Table I. Two-step Regression estimates for unsteady model at α0 = 20° and αA = 5°, SACCON. 

 Step 1 Step 2 
 b1 τ1 a Clp Clβ 

θ̂  3.68 6.37 0.75 -0.40 0.57 
ˆ ( )σ θ  (0.34) (0.58) (0.04) (0.047) (0.05) 

 
Consistency and fit of the linear relationship in Eq. (52) is shown in Fig. 13 for the wind tunnel data. A similar check 
of consistency for the CFD simulated data is shown in Figs. 14-15. As part of the investigation, two different 
turbulence models were evaluated. Two-step regression of the CFD simulated data using the SA turbulence model 
produced Fig. 14 and using the SST turbulence model produced Fig. 15. In these results the SA model appeared to 
support the linear relationship except for the lowest frequency point. The study in [41] did not investigate the low 
frequency point to determine if it was an outlier, a deficiency in the CFD approach at low frequency, or if it reflected 
an aerodynamic characteristic not captured by the current model structure. Instead the L-U model structure was 
retained to realize the benefits of a parsimonious regression model and to allow direct comparisons of models. The 
impact of that assumption was larger uncertainty bounds on the estimated parameters. Results for the SST case show 
the same characteristic for the low frequency data point and presents a more quadratic shape with frequency.  

A direct comparison of the four model parameter estimates and their 2σ standard deviations is shown in Fig. 16 
for wind tunnel, SA, and SST cases. For the wind tunnel case, uncertainty in the model parameters is derived from 
measurement noise and model error. For the CFD cases, uncertainty is derived only from two sources of model error. 
The first source of model error is due to differences in the L-U model structure representations of SA or SST data. 
This error is reflected in the 2σ bounds for each case. The second source of model error results from the two turbulence 
model representations of the data. The two turbulence models represent a range of model choice that is part of the 
model uncertainty. The charts for lpC  and lC β

, in Fig. 16, show the uncertainty bars overlapping for all three cases. 

The implication is that no statistical difference exists between cases for these parameters, at the 95% confidence level. 
This result is for a single-case study; consequently the results are not under statistical process control [39]. A Monte 
Carlo approach was not an option for this study due to the computational burden. Another option with less 
computational burden is to use DOE or a Gaussian Process method to add statistical rigor to the results. However, 
even without adding those options, it is informative to account for any uncertainty within a single case study as 
demonstrated in Fig. 16. The two charts on the right side of Fig. 16 show the parameters for the unsteady component 
of the model. The time constant τ1 for the wind tunnel and SA cases are in statistical agreement but the SST case 
produced a statistically different result. For the attenuation factor, a, the SA and SST are in statistical agreement but 
not with the wind tunnel case.  

Time histories of measured and predicted rolling moment responses for the highest and lowest frequencies are 
shown in Fig. 17 as a validation check. The SA model is in very good agreement with the wind tunnel model and 
provides a good fit to the measured data. The SST model shows some difference with the both SA and wind tunnel 
measurements. In spite of steady damping terms from wind tunnel and SST models being in reasonable agreement the 
differences in the unsteady components are sufficient to show response prediction differences. Differences between 
SA and SST model parameters and response predictions reflect the range of uncertainty present due to selection of 
turbulence models.   
3. Equation Error Method 

In some cases, especially if wide-band inputs are used, the L-U problem is addressed more efficiently using 
frequency domain model structures. The Equation Error (EE) Method is a linear regression method that can be 
developed either in the time domain or the frequency domain. However, considering the state-space representation in 
Eq. (14), the time domain approach is not directly possible because η   and η   are not measureable variables. For the 
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frequency domain approach the model is given by transforming Eq. (14) into transfer function form and expressing s 
as iω. In this case the model and output equation have the form  
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N

A C BiC
b i

z j C j v j j m

ω ωω α ω
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− + +
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+
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where ( )NC ω  and ( )α ω  are the Fourier transforms of ( )NC t and ( )tα . ( )z j  are the measurements, ( )v j  is 
measurement noise, m is the number of frequencies at which the transformed input output data are known, ω is the 
angular frequency, and 1i = − . In the Equation Error formulation unknown parameters are estimated from 
minimization of  
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In this formulation ( )v j  are residuals that encompass measurement noise and equation errors. Parameters A, B, and C 
are related to the aerodynamic coefficients by Eq. (16).  

An example of this method was applied to measurements obtained from pitch oscillation tests of a 2.5% scale F-
16XL model in a water tunnel [18]. As an efficient alternative to conventional single-frequency forced-oscillation test 
inputs, Schroeder sweeps were introduced. This approach was found to provide substantially more efficient and more 
effective input for identification of unsteady models and was validated in [19].  Practical identification using a single-
frequency input would suggest at least 6 runs, each at a different frequency, to ensure the four parameter model is 
adequately identified. For this example, a Schroeder sweep was used to allow model identification in one forced-
oscillation run at α0 = 42.5°. Figure 18 shows the input, ( )tα , and output, ( )NC t , displacements from their starting 
values at α0 = 42.5°.  The power spectrum of the Schroeder sweep is shown in Fig. 19. Schroeder sweeps provide a 
flat power spectrum over a specified frequency band with low peak-to-peak amplitudes. Amplitude of the Schroeder 
sweep is controlled by properly phasing each harmonic. Harmonic analysis provided the in-phase and out-of-phase 
components shown in Fig. 20. In this case, both components present strong frequency dependence for 30° ≤ α ≤ 70°, 
indicating an unsteady model is needed for that angle of attack region. Final estimates from the EE approach are shown 
with the Output Error (OE) results in the next section. In this study the EE estimates were used as initial estimates or 
starting values for the optimization process inherent in the OE method.   
4. Output Error Method (Frequency Domain) 

The output error (OE) method in the frequency domain can be applied directly using Eq. (56) to address this form 
of the L-U problem. OE methods are convenient when the estimation problem is nonlinear. However, the linearity of 
the aerodynamic model is not changed by the form of the estimation problem. In this case parameter estimates for the 
linear aerodynamic model are obtained by minimization of the mean square output error.  
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The OE approach was applied to the same wide-band forced-oscillation data as the EE method discussed 
previously. Figure 21 shows the parameter estimates and their standard errors over the range of angle of attack where 
unsteady behaviors were observed. These estimates are consistent with the values obtained from the EE method. 
Estimate from the two methods in the frequency domain (f.d.) are compared in Table II for α0 = 42.5°. Additional OE 
time domain (t.d.) results are also shown for comparison.    

The two methods show very good agreement for the parameter estimates and the output error method obtained 
slightly better standard errors. Validation of these estimates is demonstrated by application to test data not used for 
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estimation. Fig. 22 shows the output error estimates applied to ramp-and-hold data for a model validation test. The 
time histories show a very good match.  

 

 Equation Error (f.d.) Output Error (f.d.) Output Error (t.d.) 

θ  θ̂  ˆ( )s θ  θ̂  ˆ( )s θ  θ̂  ˆ( )s θ  

A 0.939 0.063 0.895 0.082 

not applicable 
B 2.571 0.055 2.521 0.064 
C -0.090 0.051 -0.101 0.019 
b1 0.138 0.026 0.144 0.013 

CNα -0.65 0.39 -0.70 0.15 -0.35 0.025 
CNq 2.79 0.19 2.66 0.24 2.60 0.045 
a -3.09 0.39 -3.09 0.16 -2.80 0.025 
τ1 21.53 4.11 20.57 1.90 17.48 0.29 

   
5. Output Error Method (Time Domain) 

The estimation methods presented so far have been applied to linear aerodynamic models (L-S, L-U). These 
methods can be used to estimate all parameters in the three major model terms, however, an OE estimation method is 
needed when more general nonlinear aerodynamic model structures (NL-S, NL-U) are required. In [32], a general 
mathematical model structure and modelling methodology was presented to address the nonlinear unsteady case. The 
methodology suggests using the least complex model that provides an adequate representation of the aerodynamic 
response. With this approach, a progression is made toward more complex models and correspondingly more complex 
experiment design. For example, modeling and removing static nonlinear responses first can often lead to simplified 
estimation requiring only linear model structures for the remaining two major terms. The simplifying assumptions 
associated with the least complex model are removed in progression, only as required to achieve model adequacy. In 
general, this approach should lead to the best predictive model.  

In this section two examples are provided. The first is to highlight a general NL-U case where all three major 
aerodynamic terms are nonlinear. The second is to highlight application of CFD to an S&C problem where insights 
into the aerodynamic responses and modeling requirements were provided by the computational modeling approach.  

The first example using measurements from a single-axis forced-oscillation experiment in roll with a 2.5% scale 
F-16XL model is presented here to demonstrate the more general method [32]. Tests were performed in a water tunnel 
at the Rolling Hills Research Corporation. An additional example of the NL-U case using a transport model during 
single-axis yaw oscillations is available in [27] where nonlinearities were required for the static terms only. For the F-
16XL example, measurements were obtained at six non-dimensional frequencies, k = [0.066, 0.095, 0.131, 0.160, 
0.197, 0.262], for a range of angle of attack, during large amplitude ( Aφ =30°) roll oscillation tests. Harmonic analysis 
is presented in Fig. 23 where frequency dependent behavior is observed for 25° ≤ α ≤ 40°. The middle plot presents 
R2 for a first harmonic model representing the linear case. The linear models do not completely explain the total 
variation present in the data at the lower frequencies. The lower plot presents R2 for 1st, 2nd, and 3rd order harmonic 
models. A dramatic improvement in R2 occurs only when a 3rd order harmonic model is used. For the k = 0.066 case, 
R2 changes from 0.78, with the 1st harmonic model, to 0.97 when a 3rd order harmonic model is used. One contribution 
to the nonlinear behavior is from the static terms in the model. Fig. 24 shows the fairly severe nonlinear character of 
the roll moment over angle of attack and sideslip. The surface is relatively smooth and linear at low and very high 
angles of attack; however in the mid angle-of-attack range, 20° ≤ α ≤ 50°, fairly severe static nonlinearities occur.  

For a single-degree-of-freedom roll test it is reasonable to assume that lC  can be expressed as ( , )lC pβ  and that 
a slightly more general model structure, given in Eq. (11), is appropriate. Angle of attack can be considered fixed at a 
nominal value because only relatively small changes occur during single degree-of-freedom roll forced oscillations 
with Aφ  ≤ 20°. The model for this case can be written in state form as  

Table II. Parameter estimates for unsteady model at α0 = 42.5°, F-16XL, 2.5% scale.  
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A broad class of nonlinear unsteady responses can be modelled with this basic model structure where the static term, 
steady-flow damping term, and indicial term parameters can vary nonlinearly with β . In this example, it is assumed 
that each of the four unknown parameters ( 1( ; ),  ( ; ),  ( ),  ( )l lpC C a bβ β β β∞ ∞ ) can be represented by polynomials in

β . In general, experiments can be designed to identify models for the static, damping, and indicial terms separately, 
although few facilities are capable of executing the motions required. Some computational methods are being 
investigated to obtain indicial models where specialized motions can be applied more readily [68]. For this example, 
using the OE formulation in the time domain, unknown parameters are estimated through minimization of JOE.  
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where η(i) is computed from the state equation, Eq. (56). In this example only conventional single-frequency, single-
axis, forced-oscillation test data is used. Figure 25 shows sample time histories of the large amplitude oscillatory data 
at α0 = 37.5° and β0 = 0°. The figure shows four cycles of oscillation for four frequencies, k = [0.066, 0.095, 0.131, 
0.160]. Time-domain data at each frequency for the input and output measurements are stacked to ensure all frequency 
content is included in the analysis. Integration of the model equations must be performed respecting the different 
conditions at each frequency. The first cycle of predicted response is eliminated to remove any initial transients and 
ensure that steady harmonic motion is used in calculating residuals. The amplitude, Aφ , is the same for each frequency; 
however, the resulting α and β oscillations change during roll oscillations according to the kinematic relationships:  
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where θ0 and ψ0 are the nominal pitch and yaw offsets, respectively. The distortion of the rolling moment response 
from a steady harmonic wave, in particular for the low frequency cases, indicates nonlinear behavior.  

Under the constraint of one-degree-of-freedom harmonic data, an iterative 2-stage process shown in Fig. 26 can 
be used to identify the complete model. Before starting the process, initial parameter values for a linear model are 
estimated using one of the methods described previously. Small amplitude motions tend to be well represented by 
linear models. Polynomials of the static values should be well modelled since these values can be directly measured 
in the wind tunnel; however for this example, the static terms were estimated from the dynamic measurements.  

To start the 2-stage process, first model structure determination of the unsteady term polynomials, a(β) and b(β), 
is performed using stepwise regression (SR) described in [35]. SR is an extension of linear regression that includes 
identification of statistically significant mathematical model structures. To setup the regression equation, a variable 

( )y t  is formed by subtracting the static term and approximated steady-flow damping term from the force or moment 
measurement, Ca(t), as  

 ( ) ( ) ( ; ) ( ; ) ( )a a apy t C t C C p t
V

β β= − ∞ − ∞
  (62) 

Then the regression equation, showing the discrete measured values at time t(i), is given as 

 1( ) [ ( ( )) ( ) ( ( )) ( )] ( ),   1, 2,...,E E E E Ey i b i y i a i i i i Nηβ β β ε= − + + =

  (63) 
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where index E indicates the measured values and εη(i) is an equation error. Derivatives of measurement, Ey , are 
formed using a locally smoothed numerical derivative [35]. Parameter estimates are then updated with output error 
estimation. State and measurement equations for OE estimation are  
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A second stage identification is done since ( ; )apC β∞  is only known approximately and the estimates of a(β) and 

b(β) are based on this a priori information. To update the damping term, a second variable is formed  
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If the measured values and new estimates for the unsteady term are substituted into Eq. (65), a new regression equation 
is obtained as 

 ( ) ( ; ( )) ( ) ( ),   1, 2,...,E a E E zpz i C i p i i i N
V

β ε= ∞ + =
  (66) 

The model structure and parameters for the steady-flow damping term can be estimated using Eq. (66). This 
completes the first iteration of the two stage identification. In the next iteration, a(β) and b(β) can be estimated again 
using the new values and model structure for the steady-flow damping term. This process is continued until parameter 
estimates have converged.   

 

Parameter Nonlinear Model 

( ; )lC β∞  0.007 +0.317β +0.202β2 −12.786β3 
−2.371β4 +91.123β5 

( ; )lpC β∞  −0.786 −1.791β2 +97.616β4 
(0.0045)    (0.34)   (4.48) 

( )a β  0.527 −43.668β2 −507.228β4  
(0.0051)     (0.39)     (5.096) 

1( )b β  0.624 -8.109β2 
(0.011)     (0.14) 

1( 0)τ β =  3.63 
(0.027) 

R2 0.97 
 

Since harmonic analysis inferred that at least a cubic nonlinearity is present and the static component is a relatively 
large component in this case, a cubic representation of the static data was initially implemented. It was found, however, 
that a 5th order polynomial was required for an adequate static model. Table III shows the final estimated model from 
the 2-stage process applied at α0 = 37.5° and the corresponding overall R2. The parameter covariance matrix for this 
case contained some large pair-wise correlations indicating some identifiability issues.  Figure 27 shows the measured 
and predicted rolling moments for the four frequencies considered. These graphs all show distortion from the regular 
elliptic shape associated with linear response. For each frequency, the nonlinear model prediction matches the response 
well. At the lowest frequency, k = 0.066, the distortion or nonlinearity is greatest, but the model match is still very 
good. Although the fit is very good the model in Table III is not completely satisfactory due to some inconsistency 
with small-amplitude linear analysis. Ideally the nonlinear model should represent the linear case as a subset then, for 

Table III. Nonlinear model for Cl at α0 = 37.5°, β0 = 0°, F-16XL, 2.5% scale. 
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example, at β = 0, the nonlinear model estimate, ( ; 0)lpC β∞ = , should be close to the corresponding linear model 
analysis of the small amplitude data, a value of -0.13. The differences may reflect a number of possible sources of 
error besides the model structure for the damping and unsteady terms, such as data accuracy and information content 
of the data.  

The second example in this section considers data from two sources. First, measurements from a single-axis forced-
oscillation experiment in roll with the NASA 5.5% scale GTM, and second, simulated dynamic data representing the 
same experiment obtained using CFD. CFD was used to add insight into the investigation of roll instability found in 
the stall region. With the use of CFD best practices [62] researchers obtained corroborating data or investigate 
conditions not readily possible with ground or flight test facilities. The CFD solutions presented in this example were 
computed with the Reynolds Averaged Navier-Stokes equations using the Spalart-Allmaras turbulence model. The 
limitations of RANS for post-stall flows are well known, however, one objective was to assess the applicability of the 
RANS methodology in modeling the aggregate dynamic behavior of transport aircraft into and through stall. All 
solutions to follow, both static and dynamic, were advanced with second order physical time stepping.  

Figure 28 provides a comparison of wind tunnel and CFD rolling moment coefficient results for a range of angle 
of attack and frequency. These results correspond to GTM roll forced sinusoidal oscillations with amplitude 20°. The 
oscillations were initiated from converged time-accurate static solutions at each angle of attack, and rotated for two 
complete oscillations. The dynamic solutions were essentially converged after one-fourth of a cycle. The f = 0.92 Hz 
solution was advanced with 360 time steps per roll cycle, and the f = 0.12 and 0.06 Hz cases with 1800 time steps per 
cycle. The red lines on Fig. 28 indicate the second roll oscillation cycle of the CFD simulation and black corresponds 
to the wind tunnel mean-cycle measurements. Light gray lines show the wind tunnel measurements before averaging 
the cycles of oscillation. These measurements highlight the substantial measurement noise and other responses outside 
the desired bandwidth at high angles of attack where separated flows dominate. Overall, a reasonable match in 
response shape is presented although at α0 = 12° some differences occur reflecting the sensitivity of modeling this 
difficult unsteady flight condition.  

To further explain the modeling sensitivity near the unstable and unsteady condition at α0 = 12°, Fig. 29 presents 
streamlines over the wing that were computed to show how the flow is changing around this flight condition. These 
static solutions were advanced in time at a characteristic time step of 0.02, i.e., a free stream particle will travel the 
length of the mean aerodynamic chord in 50 time steps. In addition to streamlines, lift and pitching moment static 
curves are presented below the wings along with the corresponding wind tunnel data. Figure 29 shows a sequence of 
streamlines over the wing for four flight conditions: Fig. 29a, α = 4°, showing normal flight conditions; Fig. 29b, α = 
11.75°, showing conditions just before a break in the lift curve; Fig. 29c, α = 12°, showing stalled conditions; and Fig. 
29d, α = 12.5°, showing post stall-break conditions. The figure shows that when the abrupt change in lift occurs at α 
= 12°, streamlines also make a rapid change and indicate a stalled wing tip. Also in this region, the lift curve slope has 
become flat on either side of the break in lift. These adverse conditions support the unstable roll damping found in 
harmonic analysis (Fig. 3) and is confirmed by roll divergence demonstrated in GTM subscale flight tests near this 
angle of attack. CFD results point to a more abrupt change in lift and pitching moment than found in the wind tunnel 
data.  

CFD simulation was also used to generate detailed forced-oscillation data over a limited range of α0 in key regions 
of interest. Two regions in α0 were computed that covered 10° ≤ α0 ≤ 15° and 24° ≤ α0 ≤ 30° with fine 1° increments. 
Figure 30 presents harmonic analysis for CFD simulated roll forced-oscillation data. To reduce clutter, only high 
frequency results from the wind tunnel analysis are overlaid for comparison. In general, the CFD analysis produced 
larger magnitudes for the coefficients but identified similar unsteady regions. The plots show that CFD results imply 
a small shift of the largest roll instability toward α0 = 14° rather than at α0 = 12° as indicated by the wind tunnel 
results. CFD results indicate unsteady behavior over a wider range of 11° ≤ α0 ≤ 15°, compared to the wind tunnel 
result that implied the behavior exists only near at α0 = 12°. In the lower α0 range R2 analysis is similar to the wind 
tunnel results. In that range both wind tunnel and CFD capture the nonlinearity at high frequency for α0 = 14°. At the 
upper α0 range, the CFD results present higher values of R2 reflecting the lower contribution of noise and other higher 
order effects in CFD simulation and confirming the use of linear unsteady models.  

Parameter estimation using OE in the time domain and linear model equations Eq. (21) was applied to forced 
oscillation wind tunnel data [63]. Measured inputs, β , and outputs, lC , for each of the frequencies tested were 
included in the time domain estimation process. Results from application of OE to the roll forced-oscillation data is 
shown in Fig. 31. This figure shows the estimated parameters and their 2σ bounds for a large range of angle of attack, 
for 0° ≤ α0 ≤ 70°. Uncertainty bounds are generally very small over the range of angle of attack considered. This 
implies good information content or that adequate sensitivity was obtained for parameter estimation using the wind 

Page 23 of 41 
 



tunnel data. The top plot shows steady-flow damping. Consistent with previous results, this term is neutral to unstable 
at α0 = 12° and α0 ≥ 50°. The middle plot shows model parameter, a  , that acts as a gain on the unsteady term and is, 
in general, relatively small except at α0 = 12°. The bottom plot presents a non-dimensional time constant defining lag 
in the aerodynamic response. This plot shows three regions where unsteady behavior is present and the relative size 
of the lags in those regions. The smallest lag or fastest response is at α0 = 12°.  

As an example of model fidelity, at α0 = 30°, response prediction is presented in Fig. 32. This example shows 
measured and unsteady model responses for both low and high frequency cases of the rolling moment coefficient 
against sideslip. Response measurements plotted against φ are commonly used and have been presented in this study. 
However for this graphic, using β highlights the adequacy of the linear unsteady model even with relatively large 
displacements of this key state variable. The estimated linear static curve is included to provide a reference line. Since 
linear models are used, the computed responses are regular ellipses. In general the models represent the measured data 
very well. One notable feature for the low frequency case is the very low signal-to-noise for this test point. At the 
higher frequency, signal-to-noise is improved but still not very good. The measured data for the high frequency case 
does reflect some nonlinearity as indicated by the slightly irregular elliptical shape of the data; however, the linear 
model is still an adequate representation in this case. Although lag in the response caused by the unsteady flow is not 
readily visible in this type of plot, some evidence is presented by the rotation of the ellipse relative to the static line. 
For a linear model without a lag in the response, the long axis of the ellipse will align with the static line.  

V. Concluding Remarks 
Aerodynamic research has a long history addressing the nonlinear unsteady modeling problem both analytically 

and experimentally. This paper reviewed a portion of that history and highlighted contributions made at the NASA 
Langley Research Center, primarily covering the last decade. Collaboration between analytical and experimental 
researchers offers a significant opportunity to further the technology in both disciplines. When results from these two 
areas are compared, model identification and validation methods should be carefully addressed to ensure successful 
and productive collaborations. This paper offers a methodology for comparing models obtained by applying system 
identification methods to CFD simulations and wind tunnel measurements. The methodology can accommodate 
general unsteady aerodynamic behaviors and characterize model uncertainty beyond conventional comparisons and 
aerodynamic modeling methods. 
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S= 0.77 m2,  = 0.479 m, b/2 = 0.769 
 

Figure 1a. Model geometry for 
SACCON sub-scale aircraft, Ref. [39].  

 

Figure 1b. Three-view drawing of 2.5% F-16XL water 
tunnel model. 

 

S = 5.90 ft2,  = 0.915 ft, b = 6.85 ft 
 

Figure 1c. Model geometry for NASA 
experimental sub-scale aircraft.  
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Figure 2. System Identification model for unsteady modeling applications. 
 

Figure 3. Harmonic analysis for rolling moment coefficient, 
roll oscillations, φΑ=20°, NASA GTM configuration.  
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f = 0.06 Hz f = 0.92 Hz 

φ, deg 

α0 = 14° 

φ, deg 

Fig. 4a Mean cycle, first-order, and 3rd-order harmonic model responses, α0 = 14°, 
amplitude φA = 20°, NASA GTM configuration.  

 

 f = 0.06 Hz f = 0.92 Hz 

φ, deg φ, deg 

α0 = 22° 

Fig. 4b Mean cycle and first-order harmonic model responses, α0 = 22°, amplitude φA = 20°, 
NASA GTM configuration.  
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f = 0.06 Hz f = 0.92 Hz 

φ, deg φ, deg 

α0 = 30° 

Fig. 4c Mean cycle and first-order harmonic model responses, α0 = 30°, amplitude φA = 20°, 
NASA GTM configuration.  

 

 

Figure 5. Harmonic analysis for normal-force 
coefficient, NASA GTM configuration, αΑ=10°.  

 

Figure 6. Results of nonlinear regression for 
measured out-of-phase components of NASA 

GTM, α0=18°, αΑ=10°.  
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Figure 9. Measured vs Estimated roll-
moment coefficients, 18% F-16XL, φΑ=10°.  
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Figure 10a. Two-Step Regression estimates, 18% F-

16XL, φΑ=10°.  
 

 

Figure 10b. Two-Step Regression estimates, 18% F-16XL, 
φΑ=10°.  

 

 

Figure 10c. Two-Step Regression estimates, 18% F-
16XL, φΑ=10°.  
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Figure 7. Comparison of measured and predicted 
normal-force coefficient, NASA GTM, f = 0.86 Hz, 
αΑ=10°, with oscillations about α0 = (14°, 26°).  
 

 

Figure 8. Harmonic analysis for roll-moment coefficient, 
18% F-16XL configuration, φΑ = 10°.  
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Figure 11. Two-Step Regression model of roll-moment predicted and measured data, 18% F-16XL, φΑ=10°.  
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Figure 12. Roll moment out-of-phase and in-phase components from 
harmonic analysis of wind tunnel forced oscillations in roll, φΑ=5°. SACCON. 
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Figure 13. Two-step LR model estimates from roll oscillatory 
wind tunnel data at 20° angle of attack, φΑ=5°. SACCON.  
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Figure 14. Out-of-phase vs in-phase component 
at 20° angle of attack. CFD roll oscillatory data 
using SA turbulence model, φΑ=5°. SACCON.  

Figure 15. Out-of-phase vs in-phase component at 
20° angle of attack. CFD roll oscillatory data using 

SST turbulence model, φΑ=5°. SACCON.  
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Figure 17. Model response predictions at α0 = 20° for roll oscillatory data, φΑ=5°, SACCON3. 
Key: Gray = wind tunnel measurements, Red = Two-Step model from tunnel measurements, 

Blue = Two-Step model from CFD-SA, Green = Two-Step model from CFD-SST. 
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Figure 16. Two-step LR model parameter estimates and 2σ error bounds, at α0 =20, 
using wind tunnel (WT) and CFD roll oscillatory data, φΑ=5°, SACCON3.  
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Figure 20. In-phase and out-of-phase coefficients from 
wide-band experiments, 2.5% F-16XL, αΑ=5°.  

 

 

Figure 19. Harmonic content of α wide-band 
input, 2.5% F-16XL in water tunnel, αΑ=5°.  

 

 

Figure 18. Measurements of α perturbations from 
α0 = 42.5° and normal force during wide-band 
experiment with 2.5% F-16XL in water tunnel. 
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Figure 22. Model validation of CN response to ramp 
(α0=40°-45°), non-dim pitch rate of 0.03, 2.5% F-16XL.  
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Figure 21a. Normal Force model parameters and 
2-σ bounds, using OE, 2.5% F-16XL, αΑ=5°.  

 

 

Figure 21b. Normal force model parameters and 
2-σ bounds, using OE, 2.5% F-16XL, αΑ=5°.  
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Figure 23. Harmonic Analysis of 2.5% F-16XL 
during large amplitude roll oscillations, φA = 30°.   
 

 

Figure 24. Surface plot of roll moment static 
measurements, 2.5% F-16XL. 

 

 

Figure 25. Time histories of the large amplitude oscillatory 
data at α0 = 37.5°, β0 = 0°, and four frequencies, k = [0.066, 

0.095, 0.131, 0.160], 2.5% F-16XL.  
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Figure 27. Comparison of measured and computed rolling-moment 
coefficient from time domain OE method at α0 = 37.5°, 2.5% F-16XL. 
 

Figure 26. Block diagram of model identification procedure using stepwise 
regression (SR) and an output error (OE) estimation.  
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Figure 28. Rolling moment forced oscillations from CFD and wind tunnel (unfiltered and mean-cycle) 
data, with amplitude φA = 20°, for GTM over range of angle of attack and frequency.  
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Figure 29b. CFD calculation of streamlines 
for GTM at α = 11.75°.  

 

Figure 29a. CFD calculation of streamlines 
for GTM at α = 4°.  

 

Figure 29c. CFD calculation of streamlines 
for GTM at α = 12°.  

 

Figure 29d. CFD calculation of streamlines 
for GTM at α = 12.5°.  
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Figure 30. Harmonic analysis for CFD simulated 
rolling moment coefficient, roll oscillations, φΑ = 20° 

(4 Hz filter applied to wind tunnel data), NASA 
GTM configuration.  
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Figure 31. Unsteady model parameters with 
2σ uncertainty bounds for rolling moment 

coefficient, φΑ = 20°, NASA GTM 
configuration.  
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Figure 32. Unfiltered measurements and unsteady model responses for rolling moment 
coefficient, at two oscillation frequencies, α = 30°, φΑ = 20°, NASA GTM configuration.  
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